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Abstract

We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip which

contains an eccentric crack moving at constant speed. The strip is sandwiched between two elastic half planes under

combined anti-plane mechanical shear and in-plane electrical loadings. The analysis is conducted on the permeable

crack condition by the integral transform approach. The field intensity factors and energy release rate are obtained in

terms of a Fredholm integral equation of the second kind. Some numerical results for the dynamic stress intensity factor

and the dynamic energy release rate are presented graphically to show the effects of the crack propagation speed as well

as the electromechanical coupling coefficient. The initial crack branch angle for a PZT-5H piezoceramic structure is also

predicted by maximum energy release rate criterion.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords:Moving eccentric crack; Piezoelectric material; Field intensity factors; Crack branch; Electromechanical coupling coefficient

1. Introduction

Because of the coupling characteristics between electric and mechanical deformation, piezoelectric
materials have been widely used in many engineering applications. Due to the intrinsic brittle property,
however, the stress concentration caused by mechanical and/or electric load may induce the initiation and
propagation of a crack. Also, the original defects embedded in ceramic, such as voids, inclusions and
cracks, have dominant influence on the failure of structure components. To judge whether the material with
defects continues to be used safely, it is requisite to understand damage and fracture behavior of piez-
oceramic materials.

The increasing attention to the study of crack problems in piezoelectric materials in the last decade
has led to a lot of significant works. Especially, the influence of the crack moving speed on the crack tip
field was a popular subject in classical elastodynamics. However, relatively less attention is given to
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elastodynamical moving crack problem in piezoelectric materials. Yoffe (1951) considered the problem of
a crack of fixed length at constant speed through a stretched isotropic solid of infinite extent. Based on
the criterion of maximum circumferential stress ahead of the crack tip, she concluded that there is a crit-
ical velocity of about 0.6 times the shear wave velocity at which the crack tends to curve and branch out,
while at lower velocities, the initial growth is expected to occur along the line of the crack. By consid-
ering this problem for a piezoelectric medium, it is the purpose of this investigation to find out the influ-
ence of electromechanical interaction on the initial propagation direction of a crack moving at constant
speed.

The Yoffe crack problem in a piezoelectric material was first investigated by Chen and Yu (1997). The
result implied that the moving speed of the crack had no influence on the intensities of the stress and electric
displacement. Recently, Chen et al. (1998) studied an interface Yoffe crack problem, and showed that the
stress and electric displacement intensity factors are dependent on the crack speed. But, the above Yoffe
crack researches have drawbacks. The impermeable boundary condition on the crack surface was used.
With this condition enforced, the electric displacement intensity factor depends on the electric load, and the
energy release rate is always negative in the presence of electric loading only, irrespective of its sign.
This contradicts available experimental observations (Tobin and Pak, 1993; Park and Sun, 1995a,b) in
reality, the crack may have some small electrical conductivity. Thus, the zero charge equation of elec-
trostatics in the impermeable crack boundary condition must be replaced by the equation of the conti-
nuity of electric charge (Jackson, 1976). In fact, cracks in piezoelectric media will be filled with vacuum or
air; both the components of electric displacement and the electric field will be continuous across the crack
faces.

In this paper, we consider the problem for the Yoffe-type moving eccentric crack in an infinitely long
piezoelectric ceramic strip sandwiched between elastic half planes under an exact permeable crack condition
and the combined anti-plane mechanical shear and in-plane electrical loadings. The two elastic half planes
have the same properties. By using integral transform techniques, the problem is reduced to the solution of
a Fredholm integral equation of the second kind, which is obtained from two pairs of dual integral
equations. Some numerical results for the dynamic stress intensity factor (DSIF) and the dynamic energy
release rate (DERR) are presented graphically to show the effects of the crack propagation speed as well as
the electromechanical coupling coefficient (EMCC). The initial crack branch angle for a PZT-5H piezo-
ceramic structure is also predicted by maximum energy release rate criterion.

2. Problem statement and method of solution

The situation envisaged is that of an eccentric crack of length 2a propagating at constant speed v in an
infinitely long piezoelectric strip sandwiched between two elastic half planes, which is subjected to the
combined mechanical and electric loads as shown in Fig. 1. A set of Cartesian coordinates (X ; Y ; Z) is
attached to the center of the crack for reference purposes. The piezoelectric ceramic strip poled with Z-axis
occupies the region ð�1 < X < 1;�h2 6 Y 6 h1; 2h ¼ h1 þ h2Þ, and is thick enough in the Z-direction to
allow a state of anti-plane shear. The uniform far-field shear stress, s1, and uniform electric displacement,
D0 are applied. For convenience, we assume that the piezoelectric strip consists of upper (Y P 0, thickness
h1) and lower (Y 6 0, thickness h2) regions.

The electroelastic boundary value problem is simplified under the out-of-plane displacement and the in-
plane electric fields in the forms,

uXi ¼ uYi ¼ 0; uZi ¼ wiðX ; Y ; tÞ; ð1Þ

EXi ¼ EXiðX ; Y ; tÞ; EYi ¼ EyiðX ; Y ; tÞ; EZi ¼ 0; ð2Þ
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uEXi ¼ uEYi ¼ 0; uEZi ¼ wE
i ðX ; Y ; tÞ; ð3Þ

where uki and Eki ðk ¼ X ; Y ; ZÞ are displacements and electric fields, respectively. Subscript i (i ¼ 1; 2) stand
for upper and lower regions, respectively, and superscript E represents elastic half planes.

For the current problem, it is convenient to introduce the following Galilean transformation

x ¼ X � vt; y ¼ Y ; ð4Þ

where ðx; yÞ is the translating coordinate system attached to the moving crack. It is, however, assumed that
the propagation of the ensuing crack has prevailed for such a long time that the stress distribution around
its tip is time invariant in the translating reference frame.

Accordingly, the dynamic anti-plane governing equations for the piezoelectric and elastic materials can
be written in terms of the moving coordinate system as

a2 o
2wiðx; yÞ
ox2

þ o2wiðx; yÞ
oy2

¼ 0; a6 1; ð5Þ

b2 o
2wE

i ðx; yÞ
ox2

þ o2wE
i ðx; yÞ
oy2

¼ 0; b6 1; ð6Þ

r2wiðx; yÞ ¼ 0; ð7Þ

where

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=CTð Þ2

q
; b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=CE

Tð Þ2
q

; wi � /i � e15wi=d11; CT ¼
ffiffiffiffiffiffiffiffi
l=q

p
; CE

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cE44=qE

q
;

l ¼ c44 þ e215=d11; ð8Þ

and c44, d11, e15, /i, and c
E
44 are the elastic shear modulus measured in a constant electric field, the dielectric

permittivity measured at a constant strain, the piezoelectric constant, the electric potential, and the shear
modulus of elastic half planes, respectively. Also, wi, CT, CE

T, l, q, and qE are the Bleustein function
(Bleustein, 1968), the speed of the piezoelectrically stiffened bulk shear wave, the shear wave velocity of the
elastic material, the piezoelectrically stiffened elastic constant, the piezoelectric material density, and the
elastic material density, respectively.

Fig. 1. A piezoelectric ceramic strip with an eccentric moving crack bonded to elastic half planes: definition of geometry and loading.
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In terms of the independent variables wi and wi, the constitutive relations can be written as follows:

skzi ¼ lwi;k þ e15wi;k; Dki ¼ �d11wi;k ; sEkzi ¼ cE44w
E
i;k; ð9Þ

where skzi and Dki (k ¼ x; y) are the stress and electric displacement components, respectively.
Owing to the symmetry in geometry and loading, it is sufficient to consider only the right side of the

plane. The electroelastic boundary conditions under the exact permeable crack model can be stated below:

syziðx; 0Þ ¼ 0; 06 x < a; ð10Þ

w1ðx; 0Þ ¼ w2ðx; 0Þ; a6 x < 1; ð11Þ

Dy1ðx; 0þÞ ¼ Dy2ðx; 0�Þ; 06 x < a; ð12Þ

Ex1ðx; 0þÞ ¼ Ex2ðx; 0�Þ; 06 x < a; ð13Þ

/1ðx; 0Þ ¼ /2ðx; 0Þ; a6 x < 1; ð14Þ

syz1ðx; 0Þ ¼ syz2ðx; 0Þ; a6 x < 1; ð15Þ

Dy1ðx; 0Þ ¼ Dy2ðx; 0Þ; a6 x < 1; ð16Þ

syz1ðx; h1Þ ¼ sEyz1ðx; h1Þ; ð17Þ

syz2ðx;�h2Þ ¼ sEyz2ðx;�h2Þ; ð18Þ

w1ðx; h1Þ ¼ wE
1 ðx; h1Þ; ð19Þ

w2ðx;�h2Þ ¼ wE
2 ðx;�h2Þ; ð20Þ

sEyz1ðx;þ1Þ ¼ sEyz2ðx;�1Þ ¼ s1; ð21Þ

Dy1ðx; h1Þ ¼ Dy2ðx;�h2Þ ¼ D0: ð22Þ

Applying Fourier cosine transforms to Eqs. (5)–(7), we can obtain the results as follows:

wiðx; yÞ ¼
2

p

Z 1

0

½A1iðsÞesay þ A2iðsÞe�say 
 cosðsxÞdsþ a0y; ð23Þ

wiðx; yÞ ¼
2

p

Z 1

0

½B1iðsÞesy þ B2iðsÞe�sy 
 cosðsxÞds� b0y; ð24Þ

wE
1 ðx; yÞ ¼

2

p

Z 1

0

C1ðsÞe�sby cosðsxÞdsþ c0y þ d01; ð25Þ

wE
2 ðx; yÞ ¼

2

p

Z 1

0

C2ðsÞesby cosðsxÞdsþ c0y þ d02; ð26Þ

where AjiðsÞ, BjiðsÞ, and CiðsÞ (i; j ¼ 1; 2) are the unknown functions to be determined from the given
boundary conditions. a0, b0, c0, and d0i (i ¼ 1; 2) are real constants, which will be determined from the far
field and interface loading conditions.
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The corresponding stress, electric displacement, electric potential and electric field components are
obtained in the forms

syziðx; yÞ ¼
2

p

Z 1

0

s½laA1iðsÞesay � laA2iðsÞe�say þ e15B1iðsÞesy � e15B2iðsÞe�sy 
 cosðsxÞdsþ la0 � e15b0;

ð27Þ

sEyz1ðx; yÞ ¼ � 2cE44b
p

Z 1

0

sC1ðsÞe�sby cosðsxÞdsþ cE44c0; ð28Þ

sEyz2ðx; yÞ ¼
2cE44b

p

Z 1

0

sC2ðsÞesby cosðsxÞdsþ cE44c0; ð29Þ

Dyiðx; yÞ ¼ � 2d11
p

Z 1

0

s½B1iðsÞesy � B2iðsÞe�sy 
 cosðsxÞdsþ d11b0; ð30Þ

/iðx; yÞ ¼
e15
d11

2

p

Z 1

0

½A1iðsÞesay þ A2iðsÞe�say 
 cosðsxÞdsþ
2

p

Z 1

0

½B1iðsÞesy þ B2iðsÞe�sy 
 cosðsxÞds

þ e15
d11

a0

�
� b0

�
y; ð31Þ

Exiðx; yÞ ¼
e15
d11

2

p

Z 1

0

s½A1iðsÞesay þ A2iðsÞe�say 
 sinðsxÞdsþ
2

p

Z 1

0

s½B1iðsÞesy þ B2iðsÞe�sy 
 sinðsxÞds:

ð32Þ
By applying the far field and interface loading conditions, Eqs. (17)–(22), the constants a0, b0, c0 and d0i are
evaluated as follows:

a0 ¼
d11s1 þ e15D0

c44d11 þ e215
; b0 ¼

D0

d11
; c0 ¼

s1
cE44

; d01 ¼ a0ð � c0Þh1; d02 ¼ � a0ð � c0Þh2: ð33Þ

It is convenient to use the following definitions from Eqs. (15) and (16),

A11ðsÞ � A12ðsÞ � DðsÞ; ð34Þ

B11ðsÞ � B12ðsÞ � EðsÞ: ð35Þ
Using the two mixed boundary conditions Eqs. (10)–(14) with the aid of Eqs. (34) and (35), we obtain the
following two simultaneous dual integral equations,Z 1

0

sf ðsÞDðsÞ cosðsxÞds ¼ p
2

s1
c
; 06 x < a; ð36Þ

Z 1

0

DðsÞ cosðsxÞds ¼ 0; a6 x < 1; ð37Þ

Z 1

0

s
e15
d11

DðsÞ
�

þ EðsÞ
�
sinðsxÞds ¼ 0; 06 x < a; ð38Þ

Z 1

0

e15
d11

DðsÞ
�

þ EðsÞ
�
cosðsxÞds ¼ 0; a6 x < 1; ð39Þ
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where

f ðsÞ ¼ 1

c
½ð1þ k2ÞaQðsÞ � k2RðsÞ
; ð40Þ

and

c ¼ a þ ða � 1Þk2; ð41aÞ

QðsÞ ¼ ½qþðsÞ � q�ðsÞe�2sah1 
½qþðsÞ � q�ðsÞe�2sah2 

q2þðsÞ � q2�ðsÞe�2saðh1þh2Þ

; ð41bÞ

RðsÞ ¼ ð1� e�2sh1Þð1� e�2sh2Þ
1� e�2sðh1þh2Þ

; ð41cÞ

q�ðsÞ ¼ c�44ð1þ k2Þa � b; c�44 ¼ c44=cE44; ð41dÞ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e215=c44d11

q
: ð41eÞ

It is readily seen from Eqs. (38) and (39) that

EðsÞ ¼ � e15
d11

DðsÞ: ð42Þ

To solve Eqs. (36) and (37), let DðsÞ be expressed by another function XðnÞ in the form

DðsÞ ¼ p
2

s1a2

c

Z 1

0

ffiffiffi
n

p
XðnÞJ0ðsanÞdn; ð43Þ

where J0ðsanÞ is the zero-order Bessel function of the first kind.
Upon substituting Eqs. (42) and (43) into Eqs. (36) and (37), we find that the auxiliary function XðnÞ is

given by a Fredholm integral equation of the second kind in the form

XðnÞ þ
Z 1

0

Lðn; gÞXðgÞdg ¼
ffiffiffi
n

p
; ð44Þ

where

Lðn; gÞ ¼
ffiffiffiffiffi
ng

p Z 1

0

s½f ðs=aÞ � 1
J0ðsgÞJ0ðsnÞds: ð45Þ

Eq. (44) is the governing integral equation for the current problem. Once the auxiliarly function XðnÞ is
determined from Eq. (44), the entire electroelastic field is obtainable. Owing to the complicated form of the
kernel, it seems unlikely that a closed form solution can be determined for XðnÞ. However, the Fredholm
integral Eq. (44) can be solved via some existing numerical schemes.

It is also easily seen that Eq. (44) is reduced to the corresponding static solution of Shin and Lee (2000) if
we let v ¼ 0. For the cases of v ¼ 0 and e ¼ 0, the present solution is reduced to the result of Narita et al.
(1999). But the reduced solution is different from that of them, because of the error in their result (Kim and
Lee, 2000).
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3. Field intensity factors and energy release rate

Since of practical interest are the asymptotic fields near the crack tip, we can derive the asymptotic fields
in the neighborhood of the propagating crack right as follows (Kwon and Lee, 2001):

sxz ¼ � KTðvÞ
c

ffiffiffiffiffiffiffi
2pr

p 1
	�

þ k2

 ffiffiffiffi

r
r1

r
sin

h1

2

� �
� k2 sin

h
2

� ��
; ð46Þ

syz ¼
KTðvÞ
c

ffiffiffiffiffiffiffi
2pr

p 1
	�

þ k2


a

ffiffiffiffi
r
r1

r
cos

h1

2

� �
� k2 cos

h
2

� ��
; ð47Þ

Dx ¼ �K
DðvÞffiffiffiffiffiffiffi
2pr

p sin
h
2

� �
; Dy ¼

KDðvÞffiffiffiffiffiffiffi
2pr

p cos
h
2

� �
; ð48Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ y2

q
; h ¼ tan�1 y

x� a

� 

; ð49aÞ

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ ðayÞ2

q
; h1 ¼ tan�1 ay

x� a

� 

: ð49bÞ

Here KTðvÞ and KDðvÞ are the DSIF, and the dynamic electric displacement intensity factor (DEDIF),
respectively. These field intensity factors are defined in the forms,

KTðvÞ ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
syzðx; 0Þ ¼ s1

ffiffiffiffiffiffi
pa

p
Xð1Þ; ð50Þ

KDðvÞ ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
Dyðx; 0Þ ¼

e15
c44c

KTðvÞ ¼ e15s1
c44c

ffiffiffiffiffiffi
pa

p
Xð1Þ: ð51Þ

By evaluating the DERR GðvÞ suggested by Pak (1990) and Narita and Shindo (1998) with Eqs. (46)–(48),
(49a), (49b), (50), (51) we obtain the following equations

GðvÞ ¼ la½KTðvÞ
2

2ðc44cÞ2
� ½KDðvÞ
2

2d11
¼ ½KTðvÞ
2

2c44c
¼ s21pa

2c44c
X2ð1Þ: ð52Þ

It is noted that the DERR can be expressed in terms of the DSIF and depends on the resultant stress
distribution only generated by the mechanical deformation and the electromechanical interaction.

Chen and Yu (1997) presented that a Mach number,Mð¼ v=CTÞ, had no influence on both the DSIF and
the DEDIF in an infinite piezoelectric material under the impermeable crack condition. Their solutions are

KT
1ðvÞ ¼ s1

ffiffiffiffiffiffi
pa

p
; KD

1ðvÞ ¼ D0

ffiffiffiffiffiffi
pa

p
; G1ðvÞ ¼

las21pa

2ðc44cÞ2
� D2

0pa
2d11

: ð53Þ

Eq. (53) show that the DEDIF depends on the electric load, D0, and the DERR is always negative under
electric loading only, irrespective of its sign as like in a static problem.

The present solutions based on the permeable crack model can be easily degenerated to those of an
infinite piezoelectric material by letting h! 1. In the case, the DSIF, DEDIF and DERR are given as
follows:

KT
1ðvÞ ¼ s1

ffiffiffiffiffiffi
pa

p
; KD

1ðvÞ ¼
e15KT

1ðvÞ
c44c

; G1ðvÞ ¼
s21pa
2c44c

: ð54Þ
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In the present results, it can be observed that the DSIF does not depend on crack speed as like in a purely
elastic infinite material. On the while, it is noted that the DEDIF does not depend on electric loading but
does depend on crack speed v, which is different from Eq. (53). If we consider mechanical terms only, viz.
e15 ¼ 0, Eq. (54) is exactly reduced to the purely elastic solutions of Freund (1990), but Eq. (53) is not.

On the other hand, when the geometry of the medium is such as the strip, the values of field intensity
factors of Eqs. (50) and (51) are dependent on both the finite geometry and the crack propagation speedM.

4. Discussions

It is well known phenomenon that no anti-plane mode surface wave exists in the purely elastic solids, but
piezoelectricity enables the existence of certain kinds of bound surface wave. This SH mode surface wave
velocity (Bleustein, 1968) is defined as vs ¼ CT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k4e

p
, where ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e215=ðd11lÞ

p
. The parameter k in Eq.

(41e) is related to ke in the form,

k ¼ keffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2e

p : ð55Þ

We call the parameter k as the EMCC.
The effects of the EMCC on the dimensionless DSIF and DERR are shown in Figs. 2 and 3. Fig. 2

displays K�ð� KTðvÞ=s1
ffiffiffiffiffiffi
pa

p
Þ versus M for three different EMCC k. The normalized DSIF K� decreases or

increases with the increase of EMCC as M increases, depending on the stiffness ratio c�44ð¼ c44=cE44Þ7 1
between the piezoelectric material and the surrounding elastic materials.

Fig. 3 shows G�ð� GðvÞ=G1ðv ¼ 0ÞÞ versus M. Here G� ¼ X2ð1Þ=c. The normalized DERR G� always
increases with increases of M, while it has lower value for higher value of EMCC in certain small M level,
but the trend is reversed in higher M level.

Fig. 2. K� versus M for several different EMCC k.
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Fig. 4 shows G� versus e=h with the variations of a=h ¼ 0:1, 1.0 and 10.0 for the cases of k ¼ 0:91,
c�44 ¼ 0:87, q=qE ¼ 2:7 and M ¼ 0:5. The corresponding material combination is Al/PZT-5H/Al structure
(for the selected material properties, see Shin and Lee, 2000). The DERR G� decreases with the increases of

Fig. 3. G� versus M for several different EMCC k.

Fig. 4. G� versus e/h.
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e=h. It also shows that the higher value of a=h gives the lower value of G�. But this trend is always not true
as shown in the static results of Shin and Lee (2000). It depends on the material combinations, c�44.

To investigate the initial crack branching of the brittle electroelasticity, we use the criterion of maximum
energy release rate. Using the polar coordinate system ðr; hÞ defined at the right of crack tip (Fig. 1), the
field intensity factors along the orientation h are

KTðv; hÞ ¼ KTðvÞHðhÞ; KDðv; hÞ ¼ KDðvÞ cos h
2
; ð56Þ

where

HðhÞ ¼ 1

c
ð1

�
þ k2ÞaRðhÞ cos h cos

h1

2
þ ð1þ k2ÞRðhÞ sin h sin

h1

2
� k2 cos

h
2

�
; ð57aÞ

RðhÞ ¼
ffiffiffiffi
r
r1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h

1þ a2 tan2 h

4

s
; tan h1 ¼ a tan h: ð57bÞ

Therefore, at the crack branching the DERR can be found in the form,

Gðv; hÞ ¼ la½KTðv; hÞ
2

2ðc44cÞ2
� ½KDðv; hÞ
2

2d11
¼ GðvÞF ðhÞ; ð58Þ

where

F ðhÞ ¼ 1

c
ð1

�
þ k2ÞaH2ðhÞ � k2 cos2

h
2

�
: ð59Þ

For numerical results of the initial crack branch, we consider PZT-5H piezoelectric ceramic. The relevant
material properties (Pak, 1990) are c44 ¼ 3:53� 1010 N/m2, e15 ¼ 17:0 C/m2, d11 ¼ 151� 10�10 C/Vm. The
critical Mach number, Mc ¼ 0:36, for PZT-5H ceramic is obtained by calculating the extreme values of
F ðhÞ. While at lower Mach numbers M 6Mc, F ðhÞ monotonically decreases with increase of h (Fig. 5), the

Fig. 5. F ðhÞ versus h.
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maximum value of the DERR Gðv; hÞ occurs at the crack axis h ¼ 0 and the direction of the crack growth is
along the crack axis.

For the case of M > Mc, the function F ðhÞ increases with increase of h at first and then decreases after it
reaches a certain peak value. The angle hb corresponding to a peak value is the branch angle based on the
criterion of maximum energy release rate. Furthermore, the higher crack propagation speed, the bigger
branch angle. To show the effect of electrical loading, the F ðhÞ plot of the mechanical loading only without
the electrical loading is shown in Fig. 6. It is evident from Figs. 5 and 6 that the bigger branch angles and
the higher F ðhÞ values can be seen in presence of the electrical loading.

5. Conclusions

A Griffith eccentric crack moving at constant velocity in a transversely isotropic piezoelectric ceramic
strip bonded to two elastic materials under combined anti-plane mechanical shear and in-plane electrical
displacement loads is analyzed by the permeable crack model and the integral transform approach. The
traditional concept of linear elastic fracture mechanics is extended to include the piezoelectric effects and
the results are expressed in terms of the field intensity factors and the DERR. One can confirm that the
EMCC and the stiffness ratio (c�44) are key parameters in the behaviors of piezoelectric composites. For the
case of the piezoelectric material with the surrounding geometries, the crack propagation speed have in-
fluences on the DSIF and DERR. The kinetic energy of the crack moving at the high speed can change the
propagation orientation of the moving crack.

References

Bleustein, J.L., 1968. A new surface wave in piezoelectric materials. Applied Physics Letters 13, 412–413.

Chen, Z.T., Karihaloo, B.L., Yu, S.W., 1998. A Griffith crack moving along the interface of two dissimilar piezoelectric materials.

International Journal of Fracture 91, 197–203.

Fig. 6. F ðhÞ versus h in case of e15 ¼ 0.

S.M. Kwon et al. / International Journal of Solids and Structures 39 (2002) 4395–4406 4405



Chen, Z.T., Yu, S.W., 1997. Antiplane Yoffe crack problem in piezoelectric materials. International Journal of Fracture 84, L41–L45.

Freund, L.B., 1990. Dynamic Fracture Mechanics. Cambridge Press, Cambridge.

Jackson, J.D., 1976. Classical electrodynamics. John Wiley and Sons, New York.

Kim, K.Y., Lee, K.Y., 2000. A comment on anti-plane shear crack in a piezoelectric layer bonded to dissimilar half spaces. JSME

International Journal Series A 43 (2), 196–197.

Kwon, S.M., Lee, K.Y., 2001. Constant moving crack in a piezoelectric block: anti-plane problem. Mechanics of Materials 33, 649–

657.

Narita, F., Shindo, Y., 1998. Dynamic anti-plane shear of a cracked piezoelectric ceramic. Theoretical and Applied Fracture

Mechanics 29, 169–180.

Narita, F., Shindo, Y., Watanabe, K., 1999. Anti-plane shear crack in a piezoelectric layer bonded to dissimilar half spaces. JSME

International Journal Series A 42 (1), 66–72.

Pak, Y.E., 1990. Crack extension force in a piezoelectric materials. Transactions of ASME, Journal of Applied Mechanics 57, 647–653.

Park, S.B., Sun, C.T., 1995a. Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture 70, 203–216.

Park, S.B., Sun, C.T., 1995b. Fracture criteria for piezoelectric ceramics. Journal of the American Ceramic Society 78, 1475–1480.

Shin, J.W., Lee, K.Y., 2000. Eccentric crack in a piezoelectric strip bonded to half planes. European Journal of Mechanics A/Solids 19,

989–997.

Tobin, A.G., Pak, Y.E., 1993. Effect of electric field on fracture behavior of PZT ceramics. Proceedings of SPIE, Smart Structures and

Materials 1916, 78–86.

Yoffe, E.H., 1951. The moving Griffith crack. Philosophical Magazine 42, 739–750.

4406 S.M. Kwon et al. / International Journal of Solids and Structures 39 (2002) 4395–4406


	Moving eccentric crack in a piezoelectric strip bonded to elastic half planes
	Introduction
	Problem statement and method of solution
	Field intensity factors and energy release rate
	Discussions
	Conclusions
	References


